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Abstract
The static or thermal equilibrium properties of non-interacting magnetically
anisotropic nanoparticles are studied in the framework of classical theory.
Various important thermal equilibrium properties, e.g. internal energy, specific
heat, magnetization and susceptibility, are derived from basic thermodynamic
functions such as the partition function and thermodynamic potentials. The
central issue in this paper is to study the effect of anisotropic potential on these
thermal equilibrium properties. We extensively study the linear and nonlinear
susceptibilities and their temperature dependence. We also give a comparative
study of the magnetic properties of a superparamagnetic fine particle system and
a canonical spin-glass system and thus invoke the similarities and differences
between the two.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the pioneering work of Néel five decades ago [1], the magnetic properties of nanoparticles
have attracted immense attention due to their significance in both technological applications
and fundamental research [2–6]. These systems can be considered as very good model systems
for rotational Brownian motion, thermally activated multistable systems [7] and stochastic
resonance [8].

The magnetic moment of a nanoparticle consists of a single domain structure of
ferromagnetic spins with a large net spin (S ∼ 103–104, supermoment). This spin is coupled
to the environmental degrees of freedom of the host material. Due to dynamic disturbances
of the surroundings, this large spin undergoes a rotational Brownian motion surmounting the
magnetic anisotropy potential barrier [1, 9]. In the high barrier limit, the magnetic response of
non-interacting single domain particles will follow the Néel [1] relaxation process characterized
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by the relaxation time

τ = τ0 exp

(
�Ea

kBT

)
(1)

where τ0 � 10−10–10−13 s and is related to intrawell motion, the height of the energy barrier
due to anisotropy �Ea = K V (K is the anisotropy constant and V is the particle volume),
kB is the Boltzmann constant and T denotes absolute temperature. Now depending on the
relation between the relaxation time τ and the measurement time tm, different phenomena are
observed. When τ � tm, the magnetic moment exhibits the thermal equilibrium distribution as
in a paramagnet. Due to the large value of S, the term superparamagnet is used. On the other
hand, if τ � tm, the reversal mechanism is blocked and the magnetic moment stays very close
to the energy minimum. Under an intermediate condition (τ ∼ tm) there are non-equilibrium
phenomena, e.g. magnetic relaxation.

The subject of spin-glass freezing of many disordered magnetic materials at low
temperature is an old one [10–13]. The analogy between the macroscopic behaviour of certain
magnetic ‘glassy’ systems (e.g. Au–Fe alloy) and that of ensembles of fine nanomagnetic
particles is an enigmatic subject and has received recurrent attention during the last few
years [14–17]. However, it is not clear whether all the magnetic properties of fine-particle
systems are same as those of typical spin-glasses (e.g. Au–Fe alloys). The nature of spin-
glass freezing is still controversial. So detailed studies of magnetic properties of fine particles
is necessary in order to clarify whether spin-glass freezing is the progressive freezing of the
super-moments.

The spin-glass transition is characterized by the critical behaviour of nonlinear magnetic
susceptibilities (NLMS), and in this respect it plays a significant role. Bitoh et al have shown
χ2n(ω, T ) to be a suitable experimental tool for distinguishing between a spin-glass and a fine-
particle system. The remarkable feature is the nature of the decrease of χ2n as T increases above
the peak temperature. Unfortunately, theoretical descriptions of NLMS of non-interacting fine
particles are very rare [18, 19]. The first theoretical description on NLMS was given by Jonson
et al [18] and later extended by Garcia-Palacios et al [19].

In this paper we derive rigorous expressions for the static thermal equilibrium properties of
non-interacting magnetically anisotropic nanoparticles in the framework of classical physics.
The purpose of this paper is to gain a deeper insight into the thermal equilibrium properties of
non-interacting anisotropic fine-particle systems.

With the preceding background, we organize our paper as follows. In the next section
we discuss the effective Hamiltonian of an anisotropic nanoparticle and then derive some
basic thermodynamic functions. Section 3 is devoted to the study of magnetization, linear
susceptibility and nonlinear susceptibilities. In section 4 we study the caloric quantities,
i.e. internal energy, entropy and specific heat. The central issue is to study the effect of the
magnetic anisotropy on the magnetization susceptibilities as well as on the caloric quantities
and to invoke the differences between the spin-glass transition and the progressive freezing of
the supermoments. We summarize our results and conclude in section 5.

2. Effective Hamiltonian and partition function

We mainly consider systems where the magnetic anisotropy energy has the simplest axial
symmetry. When an external field �B is applied the total magnetic energy is

H( �m) = − K V

m2
( �m · n̂)2 − �m · �B, (2)

where n̂ is a unit vector along the anisotropy axis. Introducing the unit vectors ê in the direction
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Figure 1. Coordinate system showing the unit vectors ê, b̂ and n̂
along with the angles referred to.

of the magnetic moment, �m (ê = �m
m ), b̂ in the direction of the magnetic field (b̂ = �B

B ) (c.f.
figure 1) and dimensionless anisotropy and field parameters σ = K V

kB T and ξ = mB
kBT one can

express equation (2) as

−βH = σ
(
ê · n̂

)2 + ξ
(

ê · b̂
)

. (3)

We choose the anisotropy axis n̂ as the polar axis of a spherical coordinate system. (θ, φ) and
(γ, 0) denote the angular coordinates of ê and b̂, respectively. Then the total magnetic potential
is given by

−βH = σ cos2 θ + ξ‖ cos θ + ξ⊥ sin θ cos φ, (4)

where ξ‖ = ξ cos γ and ξ⊥ = ξ sin γ . The partition function associated with the Hamiltonian
(cf equation (4)) is defined as

Z =
∫ π

0
dθ sin θ exp(σ cos2 θ + ξ‖ cos θ)I0(ξ⊥ sin θ), (5)

where I0(y) is a zeroth order modified Bessel function of the first kind [20]. After some algebra
one can show

Z = 2R(σ )

∞∑
i=0

Ci (σ, γ )

i ! ξ 2i , (6)

where

Ci (σ, γ ) = i !
i∑

k=0

bi−k,k(γ )

k∑
m=0

(−1)m k!
m!(k − m)!

R(i−k+m)(σ )

R(σ )
. (7)

bi,k(γ ) = 1

(2i)!22k(k!)2
cos2i γ sin2k γ, (8)

and

R(l)(σ ) =
∫ 1

0
dz z2l exp(σ z2). (9)

The partition function hence obtained helps the further calculation of the equilibrium
properties.

3. Equilibrium properties

In this section we discuss a number of important thermodynamic quantities of non-interacting
magnetic nanoparticles with axially symmetric magnetic anisotropy. In particular, we analyse
the effect of magnetic anisotropy on the magnetization (M) as well as the linear (χ0) and
nonlinear (χ2, χ4) susceptibilities. The differences and similarities of the linear and nonlinear
susceptibilities between canonical spin-glass systems, such as Au96Fe4 [21–23], and magnetic
nanoparticle systems, such as Cu97Co3 [17], are presented.
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3.1. Magnetization

The magnetization along the external field direction for classical spins with axially symmetric
magnetic anisotropy is defined as follows:

MB = 〈 �m · b̂〉eq = m
∂

∂ξ
(lnZ). (10)

Taking derivative w.r.t. ξ of the low-ξ expansion of lnZ , we obtain

MB = m[2C1ξ + 2(C2 − C2
1 )ξ

3 + (C3 − 3C2C1 + 2C3
1 )ξ

5 + · · ·] (11)

where the coefficients Ci are given by equation (7). We now study equation (11) for particular
cases.

(i) Isotropic case (σ = 0). In this case C1 = 1
6 , C2 = 1

60 , C3 = 1
840 . . . and so on. Thus we

obtain

MB,Lan = mL(ξ), (12)

where L(ξ) is the Langevin function.

(ii) Ising case (σ → ∞). In this regime C1 = cos2 γ

2 , C2 = cos4 γ

12 , C3 = cos6 γ

120 and so on. Thus
the magnetization becomes

MB,Ising = m cos γ tanh ξ‖. (13)

This shows that magnetization vanishes when �B is perpendicular to the anisotropy axis n̂.

(iii) Plane-rotator case (σ → −∞). In this case C1 = sin γ

4 , C2 = sin4 γ

32 , C3 = sin6 γ

384 and so
on.

MB,rot = m sin γ
I1(ξ⊥)

I0(⊥)
. (14)

In this case magnetization vanishes when �B is perpendicular to the rotator plane.
(iv) Longitudinal field case ( �B ‖ n̂). Now we have C1 = R′

2R ; C2 = R′′
12R ; C3 = R′′′

120R and so on.
Now the magnetization becomes

MB,‖ = m

[
R′

R
ξ + 1

2

(
1

3

R′′

R
−

(
R′

R

)2
)

ξ 3 + · · ·
]

. (15)

Here one can easily note that MB depends on B and T through ξ in the first three cases. So
the magnetization versus B

T (∼ξ) curves corresponding to different temperatures collapse
onto a single master curve as shown in figure 2(a). However, outside these three limiting
cases, T does not enter in MB via B

T only, but MB depends on ξ as well as σ . This
is shown in figure 2(b) for the longitudinal field case. As T decreases, one can see the
crossover from the high-temperature isotropic regime to the low-temperature Ising regime.
This crossover is induced by the magnetic anisotropy.

3.2. Linear susceptibility (χ0)

We now study the linear susceptibility of classical ‘superspin’ with axially symmetric magnetic
anisotropy. We start our discussion with the low-field expansion of the magnetization
(H = B

μ0
)

MB = χ0 H + χ2 H 3 + χ4 H 5 + . . . , (16)
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Figure 2. (a) Magnetization versus field curves corresponding to different temperatures for the
isotropic case (red, solid line), for the Ising case (black, dashed line) and for the plane-rotator
case (blue, dot-dashed line). (b) Magnetization versus longitudinal field showing the non- B

T
superposition of the magnetization curves for three different values of σ .
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Figure 3. Polar plot of χ0 versus γ for different values of σ : (a) easy-axis anisotropy, (b) easy-plane
anisotropy.

where χ0 is the linear susceptibility and χ2, χ4 are the nonlinear susceptibilities. Comparing
equations (11) and (16) we obtain

χ0 = 2mC1 = μ0m2

kBT
2C1(σ, γ ). (17)

Thus the general expression of linear susceptibility is given by

χ0 = χ
‖
0 cos2 γ + χ⊥

0 sin2 γ, (18)

where χ
‖
0 = μ0m2

kBT
R′
R ; χ⊥

0 = μ0m2

kBT
R−R′

2R . Figure 3 shows a polar plot of linear susceptibility
as a function of the angle between the anisotropy axis and the probing field for the easy-axis
anisotropy and easy-plane anisotropy for various values of σ . It shows that the larger |σ | is,
the more anisotropic the χ0 curves become. The limiting cases of the linear susceptibility
for the four regimes are χLan

0 = μ0m2

3kBT , χ
Ising
0 = μ0m2

kBT cos2 γ , χPlane−Rotator
0 = μ0m2

2kBT sin2 γ and

χ
‖
0 = μ0m2

kBT
R′
R . In figure 4(a) we plot the reduced linear susceptibility versus the dimensionless

anisotropy parameter in the longitudinal and transverse field cases. Both curves coincide
at σ = 0 taking the Langevin value of 1

3 . It is understood from figure 4(a) that the
longitudinal and transverse field cases interchange their roles when the sign of the anisotropy is
changed. Figure 4(b) shows a log–log plot of the linear susceptibility versus the dimensionless
temperature ( 1

σ
). As the influence of the anisotropy decreases with increasing temperature, χ0

undergoes a smooth crossover from the low-temperature Ising regime to the high-temperature
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Figure 4. (a) Plot of linear susceptibility versus σ in the longitudinal (red, solid line) and transverse
(green, dashed line) field cases. (b) Log–log plot of χ0 versus 1

σ
for the isotropic case (red, solid

line), Ising case (green, dashed line), plane-rotator case (blue, dot-dashed line) and the randomly
distributed anisotropy case (magenta, double dot-dashed line).

Figure 5. (a) Longitudinal and (b) transverse components of the linear susceptibility versus 1/σ

with h = 0.006 (red, solid line), h = 0.011 (green, dashed line) and h = 0.016 (blue, dot-dashed
line) and these curves exhibit spin-glass like maximum.

Langevin case. The slope of the curves is as occurs in the asymptotic regime (T −1) dependence,
but deviation from this inverse temperature dependence is sizable in the transitional region.
In this transitional region the slope is less than 1. The temperature dependence of the
longitudinal and transverse component of the linear susceptibility seem to have broad peaks
(figures 5(a), (b)). Both χ

‖
0 and χ⊥

0 show a broad peak. Bitoh et al [17, 24] have shown
temperature dependence of χ0 in a Cu97Co3 fine-particle system and in a Au96Fe4 spin-glass
system. The peak of Cu97Co3 is broad compared to that of Au96Fe4. So our theoretical results
(figure 5) qualitatively reproduce the experimental results.

3.3. Nonlinear susceptibilities (χ2, χ4)

We now study the nonlinear susceptibilities of classical spins with uniaxial magnetic anisotropy.
The main goal of this study is to invoke the suitability of these quantities for the study
of collective phenomena of glassy systems and also the glassy like behaviour of some fine
particles (Cu97Co3). Bitoh et al [17, 24] have shown that χ2 gives the key to clarifying the
differences between the spin-glass transition and the progressive freezing of the supermoments.
In this subsection we present a rigorous theoretical analysis of these nonlinear magnetic
susceptibilities and discuss their different properties for the classical spins as well as for the
spin-glass system.
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Figure 6. Polar plot of
χ2 versus γ for different
values of σ : (a) easy-axis
anisotropy, (b) easy-plane
anisotropy.
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Figure 7. Polar plot of χ4 versus γ

for different values of σ for easy-axis
anisotropy.

The nonlinear susceptibilities are defined as the coefficients of the nonlinear terms in the
expansion of the magnetization in powers of the external field. Now comparing equations (11)
and (16) we obtain

χ2 = μ3
0m4

(kBT )3
2
(
C2 − C2

1

)
, (19)

χ4 = μ5
0m6

(kBT )5

(
C3 − 3C2C1 + 2C3

1

)
. (20)

In figure 6 we plot the angular dependence of the reduced nonlinear susceptibility χ2 in the
cases of easy-axis anisotropy and easy-plane anisotropy for various values of σ . It is seen that
χ2 curves become more anisotropic as |σ | increases and become quite different from circles for
|σ | > 0. The size of the isotropic case is different for the K > 0 and K < 0 cases because
the maximum values of χ2 for K > 0 and K < 0 are quite different. Figures 7 and 8 display
the angular dependence of χ4 for the K > 0 and K < 0 cases, respectively. Let us consider
various particular cases for the nonlinear susceptibilities.

(i) Isotropic case (σ = 0):

χ2 = − μ3
0m4

45(kBT )3
(21)

χ4 = 2

945

μ5
0m6

(kBT )5
. (22)
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Figure 8. Polar plot of χ4 versus γ

for different values of σ for easy-plane
anisotropy.

(ii) Ising case (σ → ∞):

χ2 = − μ3
0m4

3(kBT )3
cos4 γ (23)

χ4 = 2

15

μ5
0m6

(kBT )5
cos6 γ. (24)

(iii) Plane-rotator case (σ → −∞):

χ2 = − μ3
0m4

16(kBT )3
sin4 γ (25)

χ4 = 1

96

μ5
0m6

(kBT )5
sin6 γ. (26)

(iv) Longitudinal field case (�b ‖ n̂):

χ2 = μ3
0m4

(kBT )3

[
1

2

(
1

3

R′′

R
−

(
R′

R

)2
)]

(27)

χ4 = μ5
0m6

(kBT )5

[
1

4

(
R′′′

30R
− R′′ R′

2R2
+

(
R′

R

)3
)]

. (28)

Figure 9(a) shows χ2 versus σ in the longitudinal and transverse field cases as well as for
the anisotropy axes distributed at random. These three curves coincide at σ = 0 and take
the Langevin value − 1

45 . A large deviation for the anisotropy is observed in the parallel
field case. This deviation is dramatically reduced for a random distribution of anisotropy
axes. The longitudinal and the transverse field cases interchange their roles when the sign
of the anisotropy is reversed. In figure 9(b) we show the log–log plot of χ2 versus 1

σ

for the Ising case, plane-rotator case, isotropic case and for the random distribution of
anisotropy axes. We can see a smooth crossover from the low-temperature Ising regime to
the high-temperature isotropic regime. In the transitional regime the departure of χ2(T )

from an inverse temperature-cubed law is sizable. Figure 10(a) shows the log–log plot
of χ4 versus dimensionless temperature for different limiting cases like Ising, isotropic,
plane-rotator and the randomly oriented anisotropy axes. It is seen that as the influence
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Figure 9. (a) Plot of χ2 versus σ in the longitudinal (red, solid line), transverse (green, dashed line)
field and random distribution (blue, dot-dashed line) cases. (b) Log–log plot of χ2 versus 1

σ
for the

isotropic case (red, solid line), Ising case (green, dashed line), plane-rotator case (blue, dot-dashed
line) and the randomly distributed anisotropy case (magenta, double dot-dashed line).

Figure 10. (a) Plot of χ4 versus σ in the longitudinal (red, solid line), transverse (green, dashed line)
field and random distribution (blue, dot-dashed line) cases. (b) Log–log plot of χ4 versus 1

σ
for the

isotropic case (red, solid line), Ising case (green, dashed line), plane-rotator case (blue, dot-dashed
line) and the randomly distributed anisotropy case (magenta, double dot-dashed line).

of anisotropy decreases with increasing T , χ4 goes smoothly from the high-temperature
isotropic regime to the low-temperature Ising regime. The transition region is very wide
in range, and in the transition region there is a significant deviation from the T −5 law. On
the other hand, figure 10(b) shows χ4 versus σ in the longitudinal, transverse and random
distributed anisotropy axes cases. The three curves coincide at σ = 0 and they take the
Langevin value 2

945 . Although the large deviation from the Langevin result is observed in
the parallel field case, the deviation in the perpendicular field case is comparable to that
of the parallel case. The random distribution of anisotropy axes reduces this anisotropy
induced departure. One can notice that qualitatively the nature of χ

‖
4 and χ⊥

4 are just
opposite to that of χ

‖
2 and χ⊥

2 . Again the roles of the longitudinal and the transverse field
cases are interchanged when the sign of the anisotropy is reversed.

Now we discuss about the canonical spin-glass phase transition based on the mean field
theory. The first attempt to make a mean field theory of spin-glasses was made by Edwards and
Anderson [10]. The Hamiltonian for the system is

H = − 1
2

∑
〈i j〉

Ji j �Si · �Sj − H
∑

i

Sz
i , (29)

where �Si is the spin vector on site i and Sz
i is the component of �Si along the applied field H .
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The exchange coupling constants Ji j are randomly chosen according to a fixed distribution

p(Ji j) = 1√
2π J0

exp

[
−−(Ji j − J )2

2J 2
0

]
, (30)

where J is a mean value and J0 is a variance of the distribution. Following Suzuki et al [25]
one can show that the order parameter susceptibility is

χsg � 1

2k2
BT 2

g

(
Tg

T − Tg

)
, (31)

where the spin-glass transition temperature Tg is
√

z J0

kB
. z is the number of nearest neighbour

spins. Now following Wada et al [26] and Sherrington et al [27] we obtain for the linear
susceptibility χ0 ∼ (χsg)

1
2 . Thus

χ0 = 1√
2k2

BT 2
g

(
Tg

T − Tg

) 1
2

. (32)

The nonlinear susceptibilities χ2 and χ4 are given by

χ2 = − 1

2k3
BT 3

g

(
Tg

T − Tg

)
(33)

χ4 = 1

32k5
BT 5

g

(
Tg

T − Tg

) 3
2

. (34)

Thus both the linear and nonlinear susceptibilities of canonical spin-glass systems diverge at
Tg obeying equations (32)–(34). χ0 and χ4 diverge positively whereas χ2 diverges negatively
at Tg. On the other hand we have seen that both the linear susceptibility and χ4 show a broad
positive peak and χ2 has a negative broad peak. The temperature dependence of χ0, χ2 and χ4

are quite different for the classical superspins and that of the canonical spin-glass systems.

4. Caloric properties

In this section we discuss the caloric quantities like energy, entropy and specific heat in a
number of particular situations.

(i) Isotropic case (σ = 0). In this case the internal energy is

uLan = −m

(
coth ξ − 1

ξ

)
. (35)

The entropy is formulated as

SLan

kB
= ln

(
2 sinh ξ

ξ

)
− ξ

(
coth ξ − 1

ξ

)
. (36)

The Langevin specific heat is given by

CB,Lan

kB
= 1 − ξ 2

sinh2 ξ
. (37)

(ii) Zero field case. In this case the mean energy is given by

uunb = −Kv
R′

R
. (38)
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Figure 11. Inverse temperature dependence of (a) u, (b) S and (c) specific heat for the isotropic
case.

Zero field entropy and specific heat are given by

Sunb

kB
= ln(2R) − σ

R′

R
, (39)

cB,unb

kB
= σ 2

[
R′′

R
−

(
R′

R

)2
]

. (40)

(iii) Ising case (σ → ∞). In the Ising regime internal energy and entropy are given by

uIsing = −
[

Kv − Kv

σ
+ m B cos γ tanh ξ‖

]
(41)

SIsing

kB
= σ − ln σ + ln(cosh ξ‖) − β

(
Kv − Kv

σ
+ m B cos γ tanh ξ‖

)
. (42)

and the specific heat is
cB,Ising

kB
= 1 + ξ 2 cos2 γ sech2(ξ cos γ ) − ξ cos γ tanh(ξ cos γ ). (43)

(iv) Plane-rotator case (σ → −∞). In this limiting condition internal energy, entropy and
specific heat are given by

urot = Kv

2σ
− I1(ξ⊥)

I0(ξ⊥)
m B sin γ, (44)

Srot

kB
= −1

2
+ ξ⊥ I1(ξ⊥)

I0(ξ⊥)
, (45)

cB,rot

kB
= −1

2
− ξ 2

⊥

[
I0(ξ⊥)I2(ξ⊥) − I 2

1 (ξ⊥)

I 2
0 (ξ⊥)

]
. (46)

(v) Longitudinal field case. In this case internal energy is given by

u‖ = Kv

[
h2 − (1 + h)3 R′(σ+) + (1 − h)3 R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)

]
, (47)

where σ± = σ(1 ± h)2 and h = ξ

2σ
. The entropy and specific heat are given by

S‖ = ln
[
(1 + h)R(σ+) + (1 − h)R(σ−)

] − σ
(1 + h)3 R′(σ+) + (1 − h)3 R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)
(48)

cB,‖
kB

=
{

(1 + h)5 R′(σ+) + (1 − h)5 R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)

−
[
(1 + h)3 R′(σ+) + (1 − h)3 R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)

]2}
σ 2. (49)
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Figure 12. Temperature dependence of (a) u, (b) S and (c) specific heat for the zero field case.
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Figure 13. Inverse temperature dependence of (a) u, (b) S and (c) specific heat for the Ising case.

The temperature dependence for the different caloric quantities for various limiting cases
are shown in figures 11, 12, 13, 14 and 15. In all the above mentioned limiting cases,
specific heat obeys a T −2 law at high temperatures and tends to nonzero values at low
temperatures. This last fact does not obey Nernst’s theorem which states that Cv → 0 as
T → 0. This actually occurs due to the classical nature of the spins. In the longitudinal
field case, entropy and specific heat both display a maximum. The height and location of
this maximum depend on the applied field. At high fields Zeeman energy dominates over
the anisotropy energy and thus smears out the maximum and its height decreases. This
maximum can be understood in terms of crossover from the high-temperature isotropic
regime to the low temperature Ising regime.

5. Summary and conclusions

We have studied the magnetic and caloric properties of non-interacting anisotropic
nanoparticles. Through the low-field expansion of magnetization, we derive linear (χ0) and
nonlinear susceptibilities (χ2, χ4) for a number of particular situations. In this analysis we have
examined the effect of anisotropic potential on these magnetic properties of superparamagnetic



Magnetic and caloric properties of magnetic nanoparticles: an equilibrium study 11321

0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

U S

Cv

ξ

(c)

ξ ξ

(a) (b)

Figure 14. Inverse
temperature dependence
of (a) u, (b) S and
(c) specific heat for the
plane-rotator case.

Figure 15. Temperature
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fine particles. This anisotropic potential induces a crossover from free-rotator to either the
two-state or plane-rotator regime. In the crossover regime the temperature dependences of
χ0, χ2 and χ4 are much steeper than those of the limit inverse-temperature power laws (T −1,
T −3 and T −5), respectively. This will misleadingly suggest interparticle interaction because
the nonlinear susceptibilities will resemble the high-temperature ranges of divergence at low
temperature. Thus we have drawn out the basic differences between the canonical spin-glass
phase transition (e.g. in Au96Fe4) and the progressive freezing of the supermoments (e.g. in
Cu97Co3). The linear susceptibility χ0 and nonlinear susceptibility χ4 show a positive peak
whereas χ2 has a negative peak for the superparamagnetic fine-particle systems. However, the
negative peak in χ2 and positive peaks in χ0 and χ4 are very broad compared with those of
the spin-glass systems. The roundness of the peak and the width of the susceptibility curves
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are marking features between the spin-glass phase transition and the progressive freezing of the
supermoments. The analysis of the caloric properties shows the essential role of the anisotropic
potential and it proves the classical nature of the supermoments.

The above analysis indicate that the origin of the magnetic properties of superparamagnetic
fine particles and spin-glasses is very different, though the behaviour of linear susceptibility
and the magnetization of fine particles is similar to those of spin-glasses. The nonlinear
susceptibilities play a crucial role in distinguishing the canonical spin-glass phase transition and
the progressive freezing of supermoments. In conclusion, we can say that our study will help
to distinguish between the spin-glass transition and the progressive freezing of supermoments.
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Erratum
Magnetic and caloric properties of magnetic
nanoparticles: an equilibrium study
M Bandyopadhyay and J Bhattacharya
2006 J. Phys.: Condens. Matter 18 11309

In the article ‘Magnetic and caloric properties of magnetic
nanoparticles: an equilibrium study’, we discuss thermal equi-
librium properties of non-interacting magnetically anisotropic
nanoparticles. Some of the results related to χ0, χ2 and
caloric properties are discussed earlier by J L Garcı́a-Palacios
in his classic article ‘On the statics and dynamics of magneto-
anisotropic nanoparticles’ [1]. If someone is interested in this
topic they should also consult the article of J L Garcı́a-Palacios
[1].
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